I suspect light-dark contours are the most important component of our perception, but they are surely not the only component. The coloring of objects certainly helps in defining their contours, although our recent work tends to emphasize the limitations of color in defining forms. The shading of objects, consisting of gradual light-dark transitions, as well as their textures, can give important clues concerning shape and depth. Although the cells we have been discussing could conceivably contribute to the perception of shading and texture, we would certainly not expect them to respond to either quality with enthusiasm. How our brain handles textures is still not clear. One guess is that complex cells do mediate shades and textures without the help of any other specialized sets of cells. Such stimuli may not activate many cells very efficiently, but the spatial extension that is an essential attribute of shading or texture may make many cells respond, all in a moderate or weak way. Perhaps lukewarm responses from many cells are enough to transmit the information to higher levels. Many people, including myself, still have trouble accepting the idea that the interior of a form (such as the kidney bean) does not itself excite cells in our brain--that our awareness of the interior as black or white (or colored, as we will see in Chapter 8) depends only on cells sensitive to the borders. The intellectual argument is that the perception of an evenly lit interior depends on the activation of cells having fields at the borders and on the absence of activation of cells whose fields are within the borders, since such activation would indicate that the interior is not evenly lit. So our perception of the interior as black, white, gray, or green has nothing to do with cells whose fields are in the interior--hard as that may be to swallow. But if an engineer were designing a machine to encode such a form, I think this is exactly what he would do. What happens at the borders is the only information you need to know: the interior is boring. Who could imagine that the brain would not evolve in such a way as to handle the information with the least number of cells?